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Abstract In this paper, a novel numerical algorithm for solving quasi penta-diagonal
linear systems is presented. The computational costs of the algorithm is less than those
of three successful algorithms given by El-Mikkawy and Rahmo (Comput Math Appl
59:1386–1396, 2010), by Lv and Le (Appl Math Comput 204:707–712, 2008), and by
Jia et al. (Int J Comput Math 89:851–860, 2012). In addition, a new recursive method
for inverting the quasi penta-diagonal matrices is also discussed. The implementation
of the algorithm using Computer Algebra Systems (CASs) such as MATLAB and
MAPLE is straightforward. Two numerical examples are given in order to demonstrate
the performance and efficiency of our algorithm.

Keywords Quasi penta-diagonal matrices · LU factorization · Linear systems ·
Inverse · Computer Algebra Systems (CASs)
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1 Introduction

Quasi penta-diagonal linear systems frequently arise in computational physics and
mathematical chemistry [1,2], especially because the discretization of differential
equations, transforming them into finite-difference equations, often results in quasi
penta-diagonal matrices [3,4]. Several examples of this can be found in boundary value
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problems (BVP) [5–7], numerical solution of ordinary and partial differential equations
(ODE and PDE), fluid mechanics [8], parallel computing [9,10], etc. [11–14]. In
quantum chemistry, finite difference methods using quasi penta-diagonal matrices are
used both in the density functional theory [15] and wavefunction formalism [16].

The n × n quasi penta-diagonal linear system takes the form

Ax = f, (1)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 a1 ã1 0 · · · 0 b̃1 b1

b2 d2 a2 ã2 0 · · · 0 b̃2

b̃3 b3 d3 a3 ã3 0 · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 b̃n−2 bn−2 dn−2 an−2 ãn−2

ãn−1 0 · · · 0 b̃n−1 bn−1 dn−1 an−1

an ãn 0 · · · 0 b̃n bn dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

x = (x1, x2, . . . , xn)T , f = ( f1, f2, . . . , fn)T and n ≥ 6. The superscript T corre-
sponds to the transpose operation. The above matrix can be written by the following
2 × 2 block matrix

A =
(

P V
U D

)
, (3)

where

V = (v1, v2) =
(

b̃1 0 · · · · · · ãn−3 an−2

b1 b̃2 0 · · · 0 ãn−2

)T

∈ R
(n−2)×2,

U =
(

ãn−1 0 · · · · · · b̃n−1 bn−1

an ãn 0 · · · 0 b̃n

)
∈ R

2×(n−2),

D =
(

dn−1 an−1
bn dn

)
∈ R

2×2,

and P is the (n − 2)th leading principal submatrix of A.
Recently, some authors have developed fast numerical or symbolic algorithms for

solving quasi penta-diagonal linear systems. For example, El-Mikkawy and Rahmo
[17], Jia et al. [18], Lv and Le [19]. All these algorithms solve the linear systems in
linear time. In this study, our main objective is to establish a more efficient algorithm
for solving linear system (1).

The rest of this paper is organized as follows. A novel numerical algorithm that will
not suffer from breakdown is constructed in Sect. 2. In addition, we give an algorithm
for inverting the quasi penta-diagonal matrices. In Sect. 3, two numerical examples
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are provided to demonstrate the performance and efficiency of our algorithm. Finally,
some conclusions of the work are given in Sect. 4.

2 Main results

In this section, we are going to formulate an efficient algorithm for solving a quasi
penta-diagonal linear system of the form (1). To do this, we begin by reviewing a
method [20], designed for serial implementation, for the solution of a penta-diagonal
linear system.

2.1 The symbolic method for solving penta-diagonal linear systems

Let P be the m × m penta-diagonal matrix of the form

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 a1 ã1 0 · · · 0 0
b2 d2 a2 ã2 0 · · · 0

b̃3 b3 d3 a3 ã3
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . . ãm−2

0 · · · 0 b̃m−1 bm−1 dm−1 am−1

0 0 · · · 0 b̃m bm dm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the LU factorization of P in the form

P = LU,

where

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0
g2 1 0 · · · · · · 0

h3 g3 1 0
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . . hm−1 gm−1 1 0

0 · · · 0 hm gm 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 e1 ã1 0 · · · 0

0 c2 e2 ã2
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 cm−2 em−2 ãm−2
0 · · · · · · 0 cm−1 em−1
0 · · · · · · · · · 0 cm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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By using the above matrices, the penta-diagonal linear system

Py = f̃,

where y = (y1, y2, . . . , ym)T and f̃ = ( f̃1, f̃2, . . . , f̃m)T , can be efficiently solved by
forward substitution and back substitution.

We may now formulate the following results:

As stated in [20], Step 3 of Algorithm 2.1 is the main part of the DETGTRI algortihm
[21], Algorithm 2.1, therefore, does not suffer from breakdown.

2.2 A numerical algorithm for solving quasi penta-diagonal linear systems

From (3), we can see that the linear system (1) can be written in the form

(
P V
U D

)(
x̂
x̃

)
=

(
f̂
f̃

)
, (4)

where

x̂ = (x1, x2, . . . , xn−2)
T , x̃ = (xn−1, xn)T ,

f̂ = ( f1, f2, . . . , fn−2)
T , f̃ = ( fn−1, fn)T .

Thus (4) is equivalent to

{
P x̂ + V x̃ = f̂,
U x̂ + Dx̃ = f̃.

(5)

123



J Math Chem (2013) 51:881–889 885

It is easy to deduce that

x̂ = P−1 f̂ − xn−1 · P−1v1 − xn · P−1v2. (6)

Let y=(y1, y2, . . . , yn−2)
T , z = (z1, z2, . . . , zn−2)

T , and w = (w1, w2, . . . , wn−2)
T

be solutions of the following equations

Py = f̂, Pz = v1, Pw = v2, (7)

respectively. Then, we have

⎧⎪⎪⎨
⎪⎪⎩

x1 = y1 − xn−1z1 − xnw1,

x2 = y2 − xn−1z2 − xnw2,

xn−3 = yn−3 − xn−1zn−3 − xnwn−3,

xn−2 = yn−2 − xn−1zn−2 − xnwn−2.

(8)

By substituting (8) into the second equation of (5), we can also deduce that

x̃ = D−1
1 f̃1, (9)

where

D1 =
(

dn−1 − ãn−1z1 − b̃n−1zn−3 − bn−1zn−2 an−1 − ãn−1w1 − b̃n−1wn−3 − bn−1wn−2

bn − anz1 − ãn z2 − b̃n zn−2 dn − anw1 − ãnw2 − b̃nwn−2

)
,

f̃1 =
(

fn−1 − ãn−1 y1 − b̃n−1 yn−3 − bn−1 yn−2

fn − an y1 − ãn y2 − b̃n yn−2

)
.

After determining x̃, we can obtain x̂ by using (6), thus

x̂ = y − xn−1 · z − xn · w. (10)

In the following, we state the algorithm for solving the linear system (1):

The computational costs for Algorithm 2.2 are 39n − 75 (n ≥ 6), since costs for
the steps 2, 3 and 4 are 35n − 116, 49, and 4n − 8 respectively. Now, we compare
computational costs among Lv and Le’s algorithm [19], SYMBNPENTA algorithm
[17], Jia, Kong and Sogabe’s algorithm [18] and our algorithm in Table 1.
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Table 1 Total operations for solving the quasi penta-diagonal linear systems

Algorithm 1 [19] Algorithm 2 [17] Algorithm 3 [18] Our algorithm

Operations 58n − 151 53n − 142 49n + 187 39n − 75

Remark 2.1 Since the processes of solving Py = f̂, Pz = v1, and Pw = v2 are
independent of each other in the Step 2 of Algorithm 2.2, they can be solved in
parallel.

Remark 2.2 The method in this paper can be directly applied to periodic tridiagonal
linear systems [20] by setting ãi = b̃i = 0 for i = 1, 2, . . . , n.

2.3 Inverse of a quasi penta-diagonal matrix

In this section, we are interested in obtaining the inverse matrix A−1. It should be
mentioned that the inverse of a quasi penta-diagonal matrix usually can not be obtained
in O(n) operations, since the inverse matrix has n2 elements and it is not, in general,
a quasi penta-diagonal matrix itself.

From the partition of matrix A in (3), it is readily verified that A has the following
decomposition

A = A1 A2 =
(

P 0
U D̃

) (
In−2 W
0 I2

)
,

where W = P−1V, D̃ = D − U W . Hence,

A−1 = A−1
2 A−1

1 =
(

In−2 −W
0 I2

) (
P−1 0
−D̃−1U P−1 D̃−1

)
. (11)

Let W =
(

w1 w2 . . . wn−2
w′

1 w′
2 . . . w′

n−2

)T

, then we can obtain the following recursive rela-

tions between the rows of A−1 and A−1
1 ,

⎧⎨
⎩

Rn = R′
n,

Rn−1 = R′
n−1,

R j = R′
j − w j R′

n−1 − w′
j R′

n,

(12)

where j = n − 2, n − 3, . . . , 1, R j and R′
j are the j-th row of A−1 and A−1

1 , respec-
tively. Therefore, we note that the inverse of a quasi penta-diagonal matrix reduces to
the inverse of a penta-diagonal matrix. Very recently, Kanal, Baykara and Demiralp
have presented an efficient algorithm for inverting a penta-diagonal matrix. The total
computational cost of the algorithm is 3n2 + 54n − 36. However, we are not going
to give the algorithm in this paper. The interested reader may refer to [22] and the
references therein.
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In the following, we show how to use their algorithm for inverting a quasi penta-
diagonal matrix.

Remark 2.3 Since costs for the steps 1, 2, and 3 are 3n2 + 54n − 36, 26n − 21, and
4n2 − 10n + 4, respectively. The total computational operations for Algorithm 2.3 are
7n2 + 70n − 53, less than those of the CPINV algorithm [17] whose complexity is
8n2 +37n −235, when n ≥ 38. Moreover, Algorithm 2.3 can be regarded as a natural
generalization of the algorithm proposed in [22].

Remark 2.4 The method proposed in this section can be very useful for the case that
users have the codes of an efficient algorithm for inverting the penta-diagonal matrices.

3 Illustrative examples

In this section, two examples are given for the sake of illustration. All tests were
performed in MATLAB 7.12.0.635 (R2011a).

Example 3.1 The first example originating from [17] and is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 2
1 1 1 0 0 0 1
1 1 2 1 1 0 0
0 0 1 2 1 1 0
0 0 1 1 2 1 1
1 0 0 1 1 2 2
2 1 0 0 1 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

6
4
6
5
6
7
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The results for Algorithm 2.2 are as follows.

Step 1.

P =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
1 1 1 0 0
1 1 2 1 1
0 0 1 2 1
0 0 1 1 2

⎞
⎟⎟⎟⎟⎠

, D =
(

2 2
2 2

)
,

U =
(

1 0 0 1 1
2 1 0 0 1

)
, V =

(
1 0 0 1 1
2 1 0 0 1

)T

,

f̂ = (6, 4, 6, 5, 6)T , f̃ = (7, 8)T .

123



888 J Math Chem (2013) 51:881–889

Table 2 Absolute errors and CPU time for Example 3.2

Algorithms n = 500 n = 1000 n = 2000 n = 5000

‖x − x∗‖ Algorithm 1 [19] 8.5242e−015 1.1588e−014 1.6048e−014 2.5047e−014
Algorithm 2 [17] 1.1534e−014 1.2056e−014 1.3038e−014 1.5619e−014
Algorithm 3 [18] 8.6796e−015 1.0764e−014 1.4941e−014 2.2783e−014
Our algorithm 4.7701e−015 5.9228e−015 7.7286e−015 1.1562e−014

CPU time (s) Algorithm 1 [19] 0.077 0.108 0.213 1.042
Algorithm 2 [17] 0.073 0.077 0.083 0.107
Algorithm 3 [18] 0.071 0.074 0.079 0.088
Our algorithm 0.058 0.060 0.063 0.076

Step 2. Solve Py = f̂, Pz = v1 and Pw = v2 by using Algorithm 2.1, then we
have:

y =
(

17t + 2

t
,
−2

t
,−11, 5, 6

)T

,

z =
(

6t + 1

t
,
−1

t
,−5, 2, 2

)T

,

w =
(

9t + 1

t
,
−1

t
,−7, 2, 3

)T

.

Step 3–Step 5. Compute x̃ = (x6, x7)
T , x̂ = (x1, x2, x3, x4, x5)

T by (9) and (10)
respectively, then we obtain

x =
(

10t + 3

8t + 3
,

3

8t + 3
,

15t + 3

8t + 3
,

2t + 3

8t + 3
,

6t + 3

8t + 3
,

15t + 3

8t + 3
,

4t + 3

8t + 3

)T
∣∣∣∣∣
t=0

= (1, 1, 1, 1, 1, 1, 1)T .

Example 3.2 Next, we consider an n×n quasi penta-diagonal linear system originating
from [18] and is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 2 1 −1
1 −1 −1 2 1

−1
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 2

−1 −1 1 −1 −1
1 −1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...
...

xn−2
xn−1
xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2
0
...

0
−3
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It can be verified that the exact solution is x∗ = (1, 1, . . . , 1)T . We used Algorithm
2.2 and other three algorithms in [17–19] to compute x. Each absolute error ‖x − x∗‖
and CPU time are provided in Table 2. Here, ‖ · ‖ denotes the Euclidean vector norm.
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From the Table 2, we know that the CPU time of our algorithm becomes longer
with the increase of the order n. As we mentioned in Remark 2.1, the equations (7)
can be solved by parallel computation, therefore, the CPU time can be shortened. The
specific details of parallel implementation can refer to paper [12,14].

4 Concluding remarks

In this paper, we gave a novel numerical computational algorithm for solving the
quasi penta-diagonal linear systems and showed that the computational costs is less
than those of three algorithms in [17–19]. The algorithm is reliable, computationally
efficient and competitive with other algorithms. Numerical examples are given to
illustrate the performance and efficiency of our algorithm. Moreover, Algorithm 2.3 is
a new recursive method for computing the inverse of the quasi penta-diagonal matrices.
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